On Saturday, June 19th, 2010, members of the IWEA Student Chapters and Young Professionals Committees participated in the semi-annual maintenance of IWEA’s rain garden. The rain garden currently intercepts rainwater from the roof of a pool house adjacent to the garden and is intended to serve as an educational tool to the greater Chicago community. The committees involved are excited to move beyond the maintenance of the garden and begin implementing the educational component of the project. The rain garden, located in Chicago Park District’s Pulaski Park in Wicker Park, was planted in October of 2008 as part of the community service event for WEFTEC.08 and was a collaboration between WEF, IWEA, MWRDGC, and Chicago’s Center for Neighborhood Technology. This event was the third effort at maintaining the 250-square foot garden by weeding, mulching, and replanting the native Illinois prairie and woodland plants. The events have been attended by a diverse group of participants, including attendees from WEF, the MWRDGC employees, the Park District, local college students, and Chicago Public Schools students.

It is important for rain gardens to be maintained in the initial years to help them become established. This year, the garden is closer to becoming established with the native species growing strongly in the garden. In the coming months, the committees believe the garden will be ready to move into the educational phase of its life. Pulaski Park is made up of a public pool, a field house, a community softball field, and a facility. Community members frequent the park. The IWEA committees plan to have a sign installed to help educate visitors to the rain garden by describing what the rain garden does and why it is important. As part of this last maintenance event, Vikas Wadhwa joined the committee member participants as the single community participant and also took pictures to help chronicle the event. Another maintenance event will be organized in the fall, and the committees plan to reach out to the wider IWEA member community and more of the surrounding community of Pulaski Park in order to educate more individuals on the benefits of rain gardens.

continued on page 7
The Illinois Water Environment Association has operated as a successful statewide organization since its inception in 1980 as the Illinois Water Pollution Control Association. During the Association’s formative years in the 1980’s, programs were developed to promote our mission of protecting the water environment through education and collaboration. Committees were formed which resulted in educational and social events held throughout the state. The Annual Conference is the leading general educational and social event of the year for IWEA members. Other technology transfer programs have included seminars on Plant Operations, Collection Systems, Pretreatment, Government Affairs, Laboratory, Safety, and Watershed. Continuing education and research is promoted through IWEA’s Public Education and Student Affairs committee and the new Scholarship committee. The education of our future water professionals is supported through IWEA’s involvement in the Illinois Junior Academy of Science, the Stockholm Junior Water Prize, the 10 Day Water Environment Curriculum, and the Sylvanus Jackson Scholarship, to name just a few.

Participation in national WEF activities began to see more involvement in the 1990’s. IWEA has continued to have a national presence ever since. In 1990, IWEA co-hosted its first WEF (then WPCF) Specialty Conference: Water Quality Management of Landfills. In 1994 and 1997, IWEA, along with Central States WEA, hosted the Local Arrangements Committee for WEFTEC when it was in Chicago.

In the first decade of the new millennium, IWEA continued to expand its national presence. IWEA hosted the largest WEFMAX event ever when it was in Chicago in 2007. This event also coincided with the national Young Professionals Summit. During WEFTEC 2008, IWEA co-hosted the WEF-Teach seminar, participated in the Local Arrangements Committee and also sponsored a WEF-Students and Young Professionals rain garden building project. The WEF-Teach seminar promoted the 10-Day Water Environment Curriculum, which is used by teaching professionals in Illinois as well as around the country. The WEF Students and Young Professionals committee collaborated with several organizations, including IWEA, to plan and coordinate the construction of a rain garden in Pulaski Park in Chicago. In 2010, IWEA was one of

cont. on page 3
DELEGATE’S CORNER

By Ted Denning, Delegate ‘10

That sentence has a tombstone-type look to it. This will be my last column under this masthead. It was a joy to work with/for all of you for the past three years as Delegate from Illinois to WEF.

Over the past three years, there have been improvements in communication and understanding between WEF and Illinois. The development of the House of Delegates in the struggle to define its role and relevance to the WEF was a challenge for all involved. Much remains to be done to assure that the voice of the MAs are heard at WEF; by staff and by the Board of Directors. Lou Kollias and John Lamb will continue the progress better than I.

One of the pleasures of being a delegate was meeting and interacting with water professionals from across the country and the world. What a wonderful group of people we have in this industry.

Apparently I didn’t screw up too badly during my tenure because – as celebrated elsewhere in this issue – IWEA is being officially recognized by WEF as the great organization it is. Illinois is the MA of the year and will be acknowledged at WEFTEC in New Orleans!

Thanks to everyone, I look forward to seeing you in New Orleans or at the Annual conference in Springfield in March.

A bit of news: Bill Bertera, WEF Executive Director, has announced his resignation effective the end of the year. There will be a nationwide search for a replacement. Bill served for 10 years in the position and will be missed. During a telephone conference with him on June 28, Bill responded to questions. Regarding whether he anticipated a shift in WEF commitments to MAs with his departure, he said no change is anticipated and that WEF staff is committed to the current programs. Regarding the relationship of AWWA and WEF, he said that there has been no movement. At the recent AWWA conference in Chicago, several joint meetings between AWWA and WEF were held; WEF representatives were treated as honored guests, and WEF President Paul Freedman spoke at the AWWA Board meeting.

President’s Perspective
continued from page 2

several national sponsors of the ‘Advanced Wastewater Treatment Technology: Conventional and Micropollutants’ conference with Illinois Institute of Technology. Even though this conference was held in Chicago, it brought in speakers and attendees from across the country. As you read this, the IWEA Executive Board is currently working with USEPA, Region 5 to sponsor a one day Asset Management Training program. This program will be held at Region 5 Headquarters in Chicago on September 23. Looking into the future, IWEA will be hosting the national Stockholm Junior Water Prize competition in Chicago in June 2011. IWEA will also co-host, along with Central States WEA, the Water Sector Interdependencies Training presented by WEF and the Federal Emergency Management Agency.

The IWEA has become much more than a statewide Member Association of WEF. With our collaboration with national organizations on meetings and educational events, the active participation of our two WEF Delegate positions, and over 40 IWEA members serving on various WEF committees, you could say that IWEA has a national connection. The combination of active statewide programs and national participation has been acknowledged by WEF with the announcement that the WEF Board of Trustees has selected IWEA for the 2010 Outstanding Member Association Award. This prestigious national award will be presented at the WEFTEC 2010 WEF Awards and Presidential Celebration in New Orleans in October. I, along with honored IWEA guests, will accept this award on behalf of our members.

IWEA Calendar of Events

<table>
<thead>
<tr>
<th>Date</th>
<th>Meeting/Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 17</td>
<td>Executive Board & Committee Chairs Meeting</td>
<td>Starved Rock Lodge, Utica, IL</td>
</tr>
<tr>
<td>October 2 – 6</td>
<td>WEFTEC 2010</td>
<td>New Orleans, LA</td>
</tr>
<tr>
<td>November 4</td>
<td>Collections Systems Seminar</td>
<td>Lisle Hyatt, Lisle, IL</td>
</tr>
<tr>
<td>December 3</td>
<td>Executive Board & Committee Chairs Meeting</td>
<td>Starved Rock Lodge, Utica, IL</td>
</tr>
</tbody>
</table>
from the SHED … promoting the understanding of nonpoint source issues, including storm water and watershed management

By Dan Bounds, Watershed Management Committee Chair

The Next Round of Illinois TMDLs
The next TMDLs and pollutant load reduction strategies planned for development in Illinois have been determined. A TMDL (Total Maximum Daily Load) analysis determines the greatest amount of a given pollutant that a water body can receive without violating water quality standards and designated uses. Illinois EPA develops TMDLs to address waters that have been placed upon the state's list of impaired waters. TMDL development is planned within the following 10 watersheds, beginning in 2010:

• Upper Big Muddy River
• Rend Lake
• Pecatonica River
• Lake Springfield
• Bonpas Creek
• Horseshoe Lake (Alexander County)
• Middle Sangamon River
• Ashkum/Clinton Creeks
• Little Vermillion River (LaSalle County)
• Galena/Sinsinawa Rivers

For information on completed TMDLs or the status of those currently under development, visit IEPA's TMDL website at www.epa.state.il.us/water/tmdl.

Green Infrastructure Plan Recommendations Submitted to Illinois General Assembly
Public Act 96-26, the Green Infrastructure for Clean Water Act, requires Illinois EPA to assess and evaluate using green infrastructure practices to help manage stormwater quality. Illinois EPA has been working with a team of researchers to develop a report and set of recommendations for submittal to the Illinois General Assembly. The report and recommendations were submitted in June 2010, recommending:

• A statewide performance standard to retain stormwater runoff that would be applicable in urban and urbanizing areas
• An aggressive and comprehensive green infrastructure education and outreach program
• State Revolving Loan Funding (SRF) for green infrastructure projects

More information on the Illinois Green Infrastructure Plan and Illinois General Assembly submittal is available at www.epa.state.il.us/green-infrastructure/index.html.

EPA Releases New Guidance on CAFO Regulations
For Illinois watersheds containing Concentrated Animal Feeding Operations (CAFOs), USEPA has released a new guidance document, “Implementation Guidance on CAFO Regulations – CAFOs That Discharge or Are Proposing to Discharge.” It has been developed to assist in implementing the 2008 CAFO rule, requiring that CAFOs that discharge or propose to discharge must be covered by a National Pollutant Discharge Elimination System (NPDES) permit. The rule also requires a nutrient management plan for manure to be submitted as part of a CAFO’s Clean Water Act permit application. Manure contains nitrogen and phosphorus, which, when improperly managed, can pollute water bodies. USEPA estimates that each year the CAFO regulations will prevent 56 million pounds of phosphorus, 110 million pounds of nitrogen, and 2 billion pounds of sediment from entering waters nationally. For additional information, visit USEPA’s CAFO website at http://cfpub.epa.gov/npdes/afo/cafofinalrule.cfm.

IWEA Seeks 2011 Award Nominations
By Pat Schatz, Awards Chair

Do you know someone who should be acknowledged for his/her outstanding contribution to the water environment profession, the Federation and the IWEA? Each year, the IWEA and the Water Environment Federation recognize a slate of deserving members, students and facilities for their continued dedication and achievements. These awards are based on nominations submitted by our membership and will be presented to the recipients during the annual banquet on March 21, 2010.

Please consider nominating someone you believe deserves this recognition. The nomination process is simple, with nomination forms and additional information available at the IWEA website, www.iweasite.org.

Deadline for nominations is Friday, October 1, 2010

Awards:

Dr. William D. Hatfield Award acknowledges an operator of wastewater treatment plants for outstanding performance and professionalism.

Arthur Sidney Bedell Award acknowledges extraordinary personal service to a Member Association.

Kenneth C. Merideth Memorial Award acknowledges an individual who has performed duties above and beyond the usual employment requirements so as to elevate the status of the plant operator and promote operator professionalism within the State of Illinois.

cont. on page 10
The NFPA 70E (2009) – Standard for Electrical Safety in the Workplace has been around since 1976; however, arc-flash safety was not added to the standard until 1995. Adoption and implementation of this code within the water/wastewater industry was initially limited but has been gaining traction in recent years.

Part of the reason for this added emphasis on arc-flash is increasing review of employee safety practices in the workplace and a desire by water/wastewater plant operators to meet safety regulations. Electrical systems with larger electrical loads, higher service voltages, and on-site generation have also increased employee exposure to arc flash, necessitating the need for implementing new safety procedures.

Where do we start?
While many plants have already taken steps toward compliance, the first step is to perform an arc-flash hazard analysis. This study must be performed by a qualified individual and may require minor field verification of existing conditions at the plant. The results of the analysis will determine the hazard approach boundaries and the flash hazard categories to be used in setting up safety procedures at facilities.

Why do this? It’s not just about compliance.
The primary reason for complying with NFPA 70E is to provide employees with a safe work environment. However, there are some additional benefits of compliance:
• Safer workplace means no lost-time accidents, lower liability costs
• Arc-Flash Study results provide updated single-lines to aid in facility maintenance, troubleshooting, and future plant upgrade designs
• Identification and modification of protective coordination settings to optimized conditions

What can be done to limit hazard categories?
Hazard categories are assigned based upon the Incident Energy Level (IE) that is present at the equipment. Below are several ways to mitigate IE level and potentially reduce associated Personal Protective Equipment (PPE) requirements:
• Reduce arcing current (current limiting fuses)
• Increase working distance
• Reduce clearing time
• Arc Reducing Maintenance Switch
• Sacrifice coordination for lower energy levels

What is the industry doing to bring facilities into compliance?
The industry has come a long way since the codes were first introduced and is moving in the right direction through greater awareness of NFPA 70E and implementation of its safety practices. For example, many plants are now requiring the standard be considered in all new designs, have purchased the appropriate PPE, and are requiring all equipment to be labeled with flash hazard warning labels (see example label above). Additionally, certain electrical maintenance and/or upgrade work is being performed by outside contractors who are better equipped to perform higher hazard category work.

USEPA's Region 5 is offering energy benchmarking assistance for water and wastewater treatment facilities as part of the USEPA's Energy Star program. For more information, go to www.epa.gov/r5climatechange/energy-star-benchmarking.html.

An example of arc flash safety labeling

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings

The study is predicated on accurate electrical system information, such as:
• A current electrical single-line diagram of the plant
• Information on all major equipment at the plant and an estimate of the conductor sizes, types, and lengths of all feeders
• Electrical utility feeder and service information, including short circuit availability
• A short circuit analysis of the plant
• Finally, a protective device coordination study with protective device settings
S ince 2003, environmental labs seeking to attain or maintain NELAP accreditation have been doing so by following the requirements found in the 2003 NELAC Standard. This Standard has served labs and environmental data users well over the years. It was a significant milestone in furthering the cause of a national accreditation program for environmental labs. Unfortunately, the time of the 2003 NELAC Standard is nearing an end (please hold back any tears or applause), and the time for the first true consensus standards, the TNI Standards, is upon us!

To summarize what’s going on: The 2003 NELAC Standard is the current standard being used in The NELAC Institute’s (TNI) National Environmental Laboratory Accreditation Program (NELAP). Last September, the NELAP Board voted to adopt for use within the program a new set of standards collectively referred to as the TNI Standards. The TNI Standards will be effective for use in NELAP after September 1st, 2010. All NELAP accredited labs are expected to come into compliance with the new standards by July 1st, 2011. It looks like NELAP is sending a new Sheriff into town!

Don't be alarmed: The TNI Standards aren’t a new way of doing things. It is rather an improved, updated and fine-tuned set of standards that responds to some of the criticisms of the 2003 standard. You may ask yourself: What’s different about the new TNI Standards? To answer this question, we went to The NELAC Institute’s website, www.nelac-institute.org, to gather information and view both standards. Here are some notable changes and highlights that apply to labs (*Please note that this is not a comprehensive evaluation and should not be considered a substitute to reading the new standards):

Major Reorganization:
- The current 2003 NELAC Standard is essentially one large standard for the four major stakeholder groups: Laboratories, Accreditation Bodies (AB’s), Proficiency Test (PT) Providers and PT Provider oversight bodies.
 * It is comprised of the old NELAC constitution and bylaws, six chapters and numerous appendices that contain all the requirements for the four stakeholder groups.
 * It is difficult to clearly identify all the technical requirements for labs. Some general requirements weren't applicable to all scientific disciplines (e.g. asbestos, chem, micro, etc.).

- The new TNI Standards have been assembled as four individual standards, one for each stakeholder. They are assembled in a format referred to as ‘Volumes and

<table>
<thead>
<tr>
<th>Table 1: TNI Accreditation Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis</td>
</tr>
<tr>
<td>Module 1 - Proficiency Testing</td>
</tr>
<tr>
<td>Module 2 - Quality Systems: General Requirements</td>
</tr>
<tr>
<td>Module 3 - Asbestos Testing</td>
</tr>
<tr>
<td>Module 4 - Chemical Testing</td>
</tr>
<tr>
<td>Module 5 - Microbiological Testing</td>
</tr>
<tr>
<td>Module 6 - Radiochemical Testing</td>
</tr>
<tr>
<td>Module 7 - Toxicity Testing</td>
</tr>
</tbody>
</table>

| **Volume 2:** General Requirements for Accreditation Bodies |
| Module 1 - General Requirements |
| Module 2 - Proficiency Testing |
| Module 3 - On-site Assessment |

| **Volume 3:** Requirements for PT Providers |
| **Volume 4:** Requirements for an Accreditor of PT Providers |

- Modules’ (table 1).
 * Each volume corresponds to a particular group (e.g. Labs, Accreditation Bodies, etc.).
 * The Laboratory volume (vol. 1) is comprised of seven modules. The general and technical requirements for the various scientific disciplines can easily be found in these modules.

- The flow of the standards has been greatly improved, and it is much easier for a specific lab to navigate the requirements.
 * For example, modules one and two apply to all the scientific disciplines, and the technical module that corresponds to the lab contains the remainder of the technical requirements (e.g. chemistry lab would only be concerned with modules 1, 2 and 4).

Changes in ISO:
- The current version of ISO 17025 for lab quality systems has been incorporated.
- ISO 17011 has been incorporated for Accreditation Bodies.

Proficiency Testing (PT):
- PT results will be reported to the Lab’s reporting limit instead of the PT reporting limit.
- PT scheduling will be calculated from analysis dates as opposed to the study open and close dates.
- The time frame between PT’s must be at least five months and no more than seven months apart. It is worded as “approximately 6 months apart” in the 2003 standard.

Demonstration of Capability (DOC):
- The new standard includes added clarity and flexibility to meet DOC requirements.
 * If an analyst has not performed a method within
the last 12 months, a new DOC is required before they can perform the analysis. This clarifies some vague language from the current 2003 standard.

* The 2003 standard required that a specific certification statement be used for DOC; this is no longer required. The requirements for documentation are still required, but labs can use their own forms.

* The DOC certificate is no longer required to be kept in a personnel file but still must be retained somewhere.

* Guidance for DOC will be located in each technical module for each scientific discipline.

Some Requirements Have Been Removed or Reduced:
- Expiration based off of arbitrary dates for chemicals and reagents are no longer required for original containers if it’s not provided by the manufacturer or required by the method.
- Increased flexibility for the Quality Manual (QM).
 * The current standard required 23 specific items to be contained in the QM and specifies what must be on the cover page.
 * The new standard only requires the QM to have a title and 8 specific items. It then lists 20 items that the QM shall contain or reference (e.g. list of methods, job descriptions, etc.).
- References and requirements for work cells have been eliminated.
- The current 2003 standard requires a glassware cleaning and storage procedure for chemical testing; this is not a requirement in the new standard.

Other Notable Items:
- Reagents are now required to be traceable; this is a new requirement.
- A lot of obsolete language has been removed, such as the NELAC constitution and bylaws.
- The new standards have been developed using a true consensus process that is accredited by the American National Standard Institution (ANSI).

In comparison to the 2003 NELAC Standard, the new TNI Standards are very well organized. This reorganization effort has improved the flow of the document, making it much more user friendly and easier to navigate. The consolidation of pertinent information and technical requirements into discipline-specific technical modules works well. Increased clarity on a number of technical requirements (e.g. PT, DOC, method validation) has washed away some gray areas that previously left things open for interpretation. Flexibility has also been provided in some areas that aren’t essential to data quality (e.g. QM requirements, specific DOC form).

In conclusion, the new TNI Standards contain very few new requirements. If a lab is compliant under the 2003 NELAC Standard, then, aside from a few minor adjustments, it will also be compliant for the TNI Standards. This is not to be considered a comprehensive review of the new standards, and many items were left out. Visit the NELAC Institute website, www.nelac-institute.org, to read the standards.

The real question you should start asking yourself is: What to do with the 2003 NELAC standard after it is retired on July 1st, 2011? Be creative… use it to start a campfire… or maybe even use it to line your bird cage!

Rain Garden

continued from page 1

Kendra Sveum and Caitlin Feehan

How can IWEA members participate?
- Stop by Pulaski Park, located at 1419 W. Blackhawk St., Chicago, IL 60642

• Come participate in the fall maintenance event. Stay posted for event details.

• The YP and Student Chapters Committees are looking for a source of salvaged wood for the garden border. If there are any donations, please contact Kendra Sveum at ksveum@abhdonohue.com.

Volunteers working on the garden
The IWEA hosted its annual golf outing on June 11, 2010 at the Links at Carillon in Plainfield, Illinois. Over eighty people enjoyed a beautiful day of golf and camaraderie in support of IWEA.

Thank you to our Golf Outing event chairman, Mark Halm, and to our sponsors:

Dinner Sponsors
Crawford Murphy Tilly, Inc.
Trotter and Associates, Inc.

Hole Sponsors
Aqua Aerobic Systems
Ley and Associates, Inc.
Peterson & Matz
Drydon Equipment, Inc.
MPR Engineering
Metropolitan Industries, Inc.
Clark Dietz
ITT Water Wastewater
Busking Engineering Services
AECOM
CE Soling/Boerger Pump
Walter E. Deuchler Associates, Inc.
Yeomanns Chicago Corp.
MWH Americas, Inc.
Support of WEF & IWEA by the Fab Five

What started out for Ziemba, Denning, Corley, Kollias, and Cargill as a natural evolution from their “day” jobs within the Illinois EPA has flourished into a lifetime support of the Water Environment Federation and the Illinois Water Environment Association. During the vast majority of the last four decades, these gentlemen have provided the following elements of collective support to WEF and IWEA (into the Year 2010):

- WEF Membership: 180 years
- IWEA Membership: 150 years (all are founding members)
- WEF & WEFTEC Committees: 44 years
- WEFTeach Workshops: 7 times
- IWEA Executive Board: 37 years
- IWEA Committees: 190 years
- IWEA Committee Chairpersons: 60 years
- WEFTEC Papers/Presentations: 5 times
- WEFMAX Chairpersons: 4 times
- IWEA Specialty Seminar Coordinators: 6 times

A special note about WEFTEC ‘94: Since the WEFTEC annual conference and exhibition had not been in Chicago for more than 30 years, the 1994 conference local arrangements required special attention and coordination between the WEF, IWEA and the McCormick Place Exhibition Center. Much of the local coordination was provided by IWEA, CSWEA, and the five supporters featured in this article.

In addition, these individuals have collectively been awarded multiple honors and recognition by both WEF and IWEA, as follows:

- WEF Service Award: 3 times
- IWEA Service Award: 8 times

This astute group of award winners has not gone unnoticed. Other honors include an Illinois Association of Wastewater Agencies “Illinois” award; two ISWPCO/IWEA “Kenneth C. Meredith” awards; an IAWPCO “Operator of the Year” award; a UIUC Civil and Environmental Engineering Alumni Association “Distinguished Alumnus” award; and the USEPA “Spark Plug” award, to name a few.

“When my colleagues from that original Illinois EPA office in Chicago reviewed and critiqued the draft version of this article, every one of them clarified that the awards we have received were secondary and were not the essential motivation to become volunteers. Rather, it was the satisfaction of supporting the water environ-
ment (plus the mission of the WEF and the IWEA) that was and will always be the most important element of our volunteer efforts!” Greg Cargill

Thoughts and Challenges
This article was written not only to acknowledge the lasting dedication of five young engineers/scientists who started at the IEPA together, but also to challenge those young professionals who are now emerging in the water quality industry. We were once the Young Professionals of WEF and IWEA; today we are the “grey beards.” Thus, now is the perfect time for those groups of young colleagues with the energy and the opportunity to volunteer to begin assuming these important roles, both in Illinois and across the Federation; now is the time to step up as young water quality professionals with your commitments to our industry as we protect the water environment!

The Illinois Fab Five appreciates all of the opportunities that we have had to support the WEF and IWEA. And to make it all so much more enjoyable, we consider our volunteer efforts over the years to have been (and will always be) simply FUN for us!

Closing Notes
Yes, we have changed over these many years (as you can see in the photos that have accompanied this article series), but the common thread of our IEPA/WEF/IWEA bonds is that these organizations gave us more than we gave them. We sincerely hope that the new ‘young guns’ in the environmental community of engineers and scientists thrown together for employment will also make some of the same collective decisions we made for our employers, the Water Environment Federation, and the Illinois Water Environment Association. You’ll be glad you did!

Just like the Energizer Bunny, We’re still going, and going, and going … for WEF and the IWEA!

2011 Award Nominations
continued from page 4

Laboratory Analyst Excellence Award acknowledges an individual for outstanding performance, professionalism, and contributions to the water quality analyses profession.

Paul Clinebell Outstanding Service Award. This is a special and prestigious award to recognize an IWEA individual who has and continues to provide significant contributions to the Illinois Water Environment Association. He/She has given outstanding service to the IWEA over the longevity of his/her membership.

Outstanding Young Professional Award recognizes the contribution of a young water environment professional (35 years old or younger) for significant contributions to the IWEA and to the advancement of knowledge, technology, and practices in the operation, management, design or construction of wastewater and pollution prevention systems.

If you have questions about the nomination process, please contact the Awards Committee Chair, Pat Schatz at (815) 933-0487 or Peschatz@citykankakee-il.gov.

Welcome New Members
By Frederick Wu, Membership Committee Chair

April
Christina Crites, Crawford Murphy & Tilly, Inc.
Todd Johanson, American Bottoms Treatment Plant
Jeremy N. Nakashima
Paul J. Voge, Greeley and Hansen, LLC

May
Paul May, Village of Burr Ridge
Vincent Paul Burke
Adam Halsband
Jeff Slocum
Eric Urbaiec, Bornquist, Inc.

June
Harry Bloom
Janet Clutters, PDC Laboratories, Inc.
Douglas Kissel, Village of Plainfield
Kenneth A. Kits, MWRDGC
John C. Mirabella, Westin Engineering
Pu Nam, MWRDGC

Save the Date

WEFTEC 2010 - The Water Quality Event
83rd Annual Technical Exhibition and Conference
Conference: October 2nd – 6th, 2010
Exhibition: October 4th – 6th, 2010
New Orleans Memorial Convention Center
New Orleans, Louisiana
Register online at www.weftec.org
Year End Financial Report
By Debra Ness, Treasurer

It does not seem possible that another financial year has passed, but it's true! The Illinois Water Environment Association 2009-2010 Fiscal Year ended in good financial condition. The IWEA completed the fiscal year with a net gain of $9,407.67. Through the fiscal year, IWEA had total income of $173,135.53 and total expenses of $163,727.86.

The Executive Board also adopted the budget for the 2010-2011 Fiscal Year. The approved budget projects an income of $100,750.00 and expenses of $96,528.00. IWEA will also continue setting aside funds for the 2011 Stockholm Junior Water Prize (SJWP) competition to be held in Chicago.

The IWEA has also budgeted funds for the last two fiscal years that was placed in the newly formed “Scholarship and Charitable Giving” committee. This money along with the money raised during the IWEA Annual Meeting Putting Contest will be used for Clean Water Scholarships, Endowed Scholarship Funding, Charitable Giving (Water for People, WERF, Haiti) and the Clean Water Awards/SJWP.

Financial Statement (As of 7/21/2010)

Bank Accounts

| Community Bank | $95,258.55 |
| Science Fair Fund | $3,958.30 |

Asset Accounts

12 Month Reserve CD	$12,096.48
24 Month Reserve CD	$12,385.31
Total	$123,698.64

IWEA 2010-2011 COMMITTEE CHAIRS

Annual Conference
Krishna Pagilla
Civil, Architectural and Environmental Engineering Dept.
Illinois Institute of Technology
3201 S. Dearborn St., Ste. 258
Chicago, IL 60616
312/567-5717
pagilla@iit.edu

Awards
Patricia Schatz
Kankakee Municipal Utility
850 N. Hubble Ave.
Kankakee, IL 60901
815/933-0487
paghsch@kankakee-il.gov

By Debra Ness, Treasurer

Electrical Power, Energy And Controls
David Tucker
CDM
125 S. Wacker Dr., Ste. 600
Chicago, IL 60606
312/346-5000
tuckerdd@cdm.com

Governmental Affairs
Louis Kollias
MWRDGC
11 E. Erie St.
Chicago, IL 60611
312/751-5190
louis.kollias@mwrdd.org

Industrial Treatment
Kam Law
CTE/ACEOM
303 E. Erie St., Ste. 600
Chicago, IL 60601
312/373-6791
kam.law@cteaceom.org

Laboratory
Becky Rose
MWRDGC
600 W. Pershing Rd.
Cicero, IL 60641
708/588-3635
bekcarmmwrdd.org

Local Arrangements
Jean-Pierre Rouanet
Prairie Analytical Systems Inc.
1210 Capitol Airport Dr.
Springfield, IL 62707
217/759-1348
j-pr@prairieanalytical.com

Marketing
Cheryl L. Kuz
Advertising and Public Relations Mgr.
Aqua-Aerobic Systems, Inc.
P.O. Box 2026
Rockford, IL 61130
815/839-4582 (direct)
ckuz@aqua-aerobic.com

Membership
Fredrick Wu
MWRDGC
111 E. Erie St.
Chicago, IL 60611
312/751-4025
fredrick.wu@mwrddcst.il.us

Newsletter
Kathy Cooper
Rochelle Municipal Utilities
P.O. Box 456
Rochelle, IL 61068
815/361-2065
kcooperrmu.net

Nominating
Amanda Withers
Crawford, Murphy & Tilly, Inc.
2750 W. Washington St.
Springfield, IL 62702
217/787-8050
217/787-1114 (Direct)

Plant Operations
Greg Garbs
1601 Sharon Rd.
Streator, IL 61364
815/827-6353
815/766-2553 (Cell)
strtrwwtp@verizon.net

Program
Sandra Conrad
MWRDGC
400 E. 130th St.
Chicago, IL 60628
773/836-3526
sandra.conrad@mwrdd.org

Public Education & Student Affairs
Norm Rose
835 S. Willmerette Ave.
Westmont, IL 60559
630/227-3796
nmrose@bvglobal.net

Safety
Mark Termini
Village of Addison
711 N. Addison Rd.
Addison, IL 60101
630/279-2170
mtermini@addison-il.org

Scholarships and Charitable Giving
Mary Johnson
Rock River WRD
PO Box 7400
Rockford, IL 61126-7480
815/387-7523
mjohnson@rrwrd.dst.il.us

Student Chapters
Louis Storino
MWRDGC
Engineering Dept.
111 E. Erie St.
Chicago, IL 60611
312/751-5190
louis.storino@mwrdd.org

Watershed Management
Dan Bounds
CDM
125 S. Wacker Dr., Ste. 600
Chicago, IL 60606
312/346-5000
boundsdg@cdm.com

Website
Mary Johnson
Rock River WRD
PO Box 7400
Rockford, IL 61126-7480
815/387-7523
mjohnson@rrwrd.dst.il.us

Young Professionals
Sensen Gali
CDM
125 S. Wacker Dr., Ste. 600
Chicago, IL 60606
312/346-5000
galsense@cdm.com

Ad Hoc - Territory Issues
Dennis Priewe
Rock River Water Reclamation
PO Box 7400
Rockford, IL 61126-7480
815/387-7634
dprieve@rrwrd.dst.il.us

Annual Conference
Krishna Pagilla
Civil, Architectural and Environmental Engineering Dept.
Illinois Institute of Technology
3201 S. Dearborn St., Ste. 258
Chicago, IL 60616
312/567-5717
pagilla@iit.edu

Awards
Patricia Schatz
Kankakee Municipal Utility
850 N. Hubble Ave.
Kankakee, IL 60901
815/933-0487
paghsch@kankakee-il.gov

Biosolids
Dan Collins
MWRDGC
7801 S. LaGrange Rd.
Willow Springs, IL 60480
708/588-4300
Dan.Collins@mwrdd.org

Collection Facilities
A.J. Hullenbeck
BJN Group
200 W. Front St.
Wheaton, IL 60187
630/682-4700
ahullenbeck@bjngroup.com
The 2010 Sylvanus Jackson Award was presented to the Environmental Resources Training Center student Katherine Stark of Alton, Illinois. A married mother of two girls, Katie decided to pursue a career in water and wastewater treatment operations. She began the ERTC one-year Water Quality Control Operations Program last August and has excelled in all of her classes. She will graduate this July with a Certificate of Completion from the ERTC program at Southern Illinois University Edwardsville and plans to find a job at a wastewater treatment plant in the western United States.

Congratulations, Katie!

Getting Your Daily Dose of Digital
By Cheryl Kunz, Marketing Chair

There is no question that we are in a gadget-age when just about everything we do can be emailed, voicemail, texted, blogged, photographed, purchased or geographically located using a device roughly the size of a credit card. The facts are that more than 82% of Americans currently own a cell phone, and over 75% of Americans access the internet, and many of these folks rely on these technologies daily to send and receive emails, book airline reservations, text their teens and find the nearest Starbucks® coffee. Even advanced technologies, including social media, are being used by an increasing number of people, from "Boomers" to "Millennials." According to a survey from AARP, 27% of Americans age 50+ say they now use social media websites.

As trends in communication continue to evolve, the IWEA is challenged with keeping up with these technological phenomena in an effort to meet the needs of its membership, the industry and the general public. This is an exciting time for the IWEA Marketing committee as we continue to learn and apply digital media and technologies into our communications strategy in an effort to communicate more efficiently and effectively. In the months ahead, you may see some enhancements in the way IWEA communicates via the website, email, through online surveys and other methods of digital communication. Our goal is to ensure that the IWEA membership has the most current, reliable and easily accessible information - sometimes instantaneously for you Millennials! Who knows, maybe an IWEA Facebook page is in the near future!